191 research outputs found

    Phase behavior of a system of particles with core collapse

    Full text link
    The pressure-temperature phase diagram of a one-component system, with particles interacting through a spherically symmetric pair potential in two dimensions is studied. The interaction consists of a hard core plus an additional repulsion at low energies. It is shown that at zero temperature, instead of the expected isostructural transition due to core collapse occurring when increasing pressure, the system passes through a series of ground states that are not triangular lattices. In particular, and depending on parameters, structures with squares, chains, hexagons and even quasicrystalline ground states are found. At finite temperatures the solid-fluid coexistence line presents a zone with negative slope (which implies melting with decreasing in volume) and the fluid phase has a temperature of maximum density, similar to that in water.Comment: 11 pages, 15 figures included. To appear in PRE. Some figures in low quality format. Better ones available upon request from [email protected]

    Phase Transitions of Hard Disks in External Periodic Potentials: A Monte Carlo Study

    Full text link
    The nature of freezing and melting transitions for a system of hard disks in a spatially periodic external potential is studied using extensive Monte Carlo simulations. Detailed finite size scaling analysis of various thermodynamic quantities like the order parameter, its cumulants etc. are used to map the phase diagram of the system for various values of the density and the amplitude of the external potential. We find clear indication of a re-entrant liquid phase over a significant region of the parameter space. Our simulations therefore show that the system of hard disks behaves in a fashion similar to charge stabilized colloids which are known to undergo an initial freezing, followed by a re-melting transition as the amplitude of the imposed, modulating field produced by crossed laser beams is steadily increased. Detailed analysis of our data shows several features consistent with a recent dislocation unbinding theory of laser induced melting.Comment: 36 pages, 16 figure

    Phase Transitions of Soft Disks in External Periodic Potentials: A Monte Carlo Study

    Full text link
    The nature of freezing and melting transitions for a system of model colloids interacting by a DLVO potential in a spatially periodic external potential is studied using extensive Monte Carlo simulations. Detailed finite size scaling analyses of various thermodynamic quantities like the order parameter, its cumulants etc. are used to map the phase diagram of the system for various values of the reduced screening length κas\kappa a_{s} and the amplitude of the external potential. We find clear indication of a reentrant liquid phase over a significant region of the parameter space. Our simulations therefore show that the system of soft disks behaves in a fashion similar to charge stabilized colloids which are known to undergo an initial freezing, followed by a re-melting transition as the amplitude of the imposed, modulating field produced by crossed laser beams is steadily increased. Detailed analysis of our data shows several features consistent with a recent dislocation unbinding theory of laser induced melting

    Two-dimensional XY spin/gauge glasses on periodic and quasiperiodic lattices

    Full text link
    Via Monte Carlo studies of the frustrated XY or classical planar model we demonstrate the possibility of a finite (nonzero) temperature spin/gauge glass phase in two dimensions. Examples of both periodic and quasiperiodic two dimensional lattices, where a high temperature paramagnetic phase changes to a spin/gauge glass phase with the lowering of temperature, are presented. The existence of the spin/gauge glass phase is substantiated by our study of the temperature dependence of the Edwards-Anderson order parameter, spin glass susceptibility, linear susceptibility and the specific heat. Finite size scaling analysis of spin glass susceptibility and order parameter yields a nonzero critical temperature and exponents that are in close agreement with those obtained by Bhatt and Young in their random ±J{\pm J} Ising model study on a square lattice. These results suggest that certain periodic and quasiperiodic two-dimensional arrays of superconducting grains in suitably chosen transverse magnetic fields should behave as superconducting glasses at low temperatures.Comment: RevTex, 25 pages. 11 epsf figures available upon request ([email protected] or [email protected]). Submitted to Phys. Rev.

    Depinning Transition of a Two Dimensional Vortex Lattice in a Commensurate Periodic Potential

    Full text link
    We use Monte Carlo simulations of the 2D one component Coulomb gas on a triangular lattice, to study the depinning transition of a 2D vortex lattice in a commensurate periodic potential. A detailed finite size scaling analysis indicates this transition to be first order. No significant changes in behavior were found as vortex density was varied over a wide range.Comment: 5 pages, 8 figures. Revised discussion of correlation length exponent using a more accurate finite size scaling analysis. New figs. 5 and 6. Old figs. 6 and 7 now figs. 7 and

    Spin glass behavior of frustrated 2-D Penrose lattice in the classical planar model

    Full text link
    Via extensive Monte Carlo studies we show that the frustrated XY Hamiltonian on a 2-D Penrose lattice admits of a spin glass phase at low temperature. Studies of the Edwards-Anderson order parameter, spin glass susceptibility, and local (linear) susceptibility point unequivocally to a paramagnetic to spin glass transition as the temperature is lowered. Specific heat shows a rounded peak at a temperature above the spin glass transition temperature, as is commonly observed in spin glasses. Our results strongly suggest that the critical point exponents are the same as obtained by Bhatt and Young in the ±J{\pm}J Ising model on a square lattice. However, unlike in the latter case, the critical temperature is clearly finite (nonzero). The results imply that a quasiperiodic 2-D array of superconducting grains in a suitably chosen transverse magnetic field should behave as a superconducting glass at low temperature.Comment: RevTex, 4 pages Including 4 figures. To appear in the June 1 1996 issue of Phys. Rev. B (Rapid Communications). Revised/replaced edition contains an erratum at the end of the paper, also to appear in Phys. Rev.

    Prediction of Emerging Technologies Based on Analysis of the U.S. Patent Citation Network

    Full text link
    The network of patents connected by citations is an evolving graph, which provides a representation of the innovation process. A patent citing another implies that the cited patent reflects a piece of previously existing knowledge that the citing patent builds upon. A methodology presented here (i) identifies actual clusters of patents: i.e. technological branches, and (ii) gives predictions about the temporal changes of the structure of the clusters. A predictor, called the {citation vector}, is defined for characterizing technological development to show how a patent cited by other patents belongs to various industrial fields. The clustering technique adopted is able to detect the new emerging recombinations, and predicts emerging new technology clusters. The predictive ability of our new method is illustrated on the example of USPTO subcategory 11, Agriculture, Food, Textiles. A cluster of patents is determined based on citation data up to 1991, which shows significant overlap of the class 442 formed at the beginning of 1997. These new tools of predictive analytics could support policy decision making processes in science and technology, and help formulate recommendations for action

    Phase Transitions Driven by Vortices in 2D Superfluids and Superconductors: From Kosterlitz-Thouless to 1st Order

    Full text link
    The Landau-Ginzburg-Wilson hamiltonian is studied for different values of the parameter λ\lambda which multiplies the quartic term (it turns out that this is equivalent to consider different values of the coherence length ξ\xi in units of the lattice spacing aa). It is observed that amplitude fluctuations can change dramatically the nature of the phase transition: for small values of λ\lambda (ξ/a>0.7\xi/a > 0.7), instead of the smooth Kosterlitz-Thouless transition there is a {\em first order} transition with a discontinuous jump in the vortex density vv and a larger non-universal drop in the helicity modulus. In particular, for λ\lambda sufficiently small (ξ/a1\xi/a \cong 1), the density of bound pairs of vortex-antivortex below TcT_c is so low that, vv drops to zero almost for all temperature T<TcT<Tc.Comment: 8 pages, 5 .eps figure

    Van der Waals loops and the melting transition in two dimensions

    Full text link
    Evidence for the existence of van der Waals loops in pressure p versus volume v plots has for some time supported the belief that melting in two dimensions is a first order phase transition. We report rather accurate equilibrium p(v) curves for systems of hard disks obtained from long Monte Carlo simulations. These curves, obtained in the constant volume ensemble, using periodic boundary conditions, exhibit well defined van der Waals loops. We illustrate their existence for finite systems that are known to undergo a continuous transition in the thermodynamic limit. To this end, we obtain magnetization m versus applied field curves from Monte Carlo simulations of the 2D Ising model, in the constant m ensemble, at the critical point. Whether van der Waals loops for disk systems behave in the thermodynamic limit as they do for the 2D Ising model at the critical point cannot be ruled out. Thus, the often made claim that melting in 2D is a first order phase transition, based on the evidence that van der Waals loops exist, is not sound.Comment: 10 pages, 6 Postscript figures (submitted to Phys.Rev.E). For related work, see http://pipe.unizar.es/~jf

    Phason elasticity of a three-dimensional quasicrystal: transfer-matrix method

    Full text link
    We introduce a new transfer matrix method for calculating the thermodynamic properties of random-tiling models of quasicrystals in any number of dimensions, and describe how it may be used to calculate the phason elastic properties of these models, which are related to experimental measurables such as phason Debye-Waller factors, and diffuse scattering wings near Bragg peaks. We apply our method to the canonical-cell model of the icosahedral phase, making use of results from a previously-presented calculation in which the possible structures for this model under specific periodic boundary conditions were cataloged using a computational technique. We give results for the configurational entropy density and the two fundamental elastic constants for a range of system sizes. The method is general enough allow a similar calculation to be performed for any other random tiling model.Comment: 38 pages, 3 PostScript figures, self-expanding uuencoded compressed tar file, LaTeX using RevTeX macros and epsfig.st
    corecore